Necator americanus Hookworm Therapy: Biochemical and Immunological Insights from Serum Preconditioning

Immunomodulatory Mechanisms of Necator americanus

Necator americanus, a soil-transmitted human hookworm, resides in the small intestine, secreting excretory/secretory (ES) products comprising proteins, glycans, lipids, and extracellular vesicles (EVs). These molecules interact with host immune cells, suppressing pro-inflammatory responses, inducing regulatory T cells (Tregs), and promoting T-helper 2 (Th2) polarization. Genomic sequencing identifies 19,151 genes, many encoding immunomodulatory proteins, including helminth defense molecules (HDMs), cysteine-rich secretory proteins (CRISPs), and activation-associated secreted proteins (ASPs). Transcriptomic data show upregulation of genes for anti-inflammatory proteins during host interaction stages. These products may compensate for the absence of co-evolved helminths in populations with reduced helminth exposure, aligning with the hygiene hypothesis, which posits that decreased microbial exposure contributes to immune dysregulation. ES products modulate toll-like receptor (TLR) signaling, reduce pro-inflammatory cytokines (e.g., tumor necrosis factor-alpha [TNF-α], interleukin-1 beta [IL-1β]), and enhance anti-inflammatory cytokines (e.g., interleukin-10 [IL-10], transforming growth factor-beta [TGF-β]).

Serum Protein Preconditioning

Exposure of N. americanus third-stage larvae (L3) to host blood serum proteins during development upregulates genes for anti-inflammatory protein-1 (Na-AIP-1), antioxidants (e.g., glutathione S-transferase [GST], superoxide dismutase [SOD]), and proteases. In vitro studies demonstrate that serum exposure triggers stage-specific ES secretion, mimicking host interactions during skin penetration, lung migration, and intestinal establishment. Proteomic analysis identifies approximately 200 ES proteins, with serum-exposed larvae showing increased expression of immunomodulatory molecules. Clinical trials (NCT01940757) indicate that repeated L3 exposure induces adaptive immune responses, with elevated immunoglobulin G1 (IgG1), immunoglobulin E (IgE), and eosinophil levels, suggesting preconditioning enhances biochemical compensation. Serum exposure upregulates genes for tissue inhibitor of metalloproteinases (TIMP)-like proteins, which inhibit matrix degradation, and acetylcholinesterase, which modulates neuromuscular signaling. These adaptations may optimize symbiotic interactions and host immune modulation. Preconditioned larvae exhibit enhanced secretion of Na-AIP-1, which suppresses macrophage activation, and Na-ASP-2, which mimics chemokines, recruiting neutrophils and monocytes in vivo.

Biochemical Products and Immune Interactions

ES products include HDMs structurally akin to cathelicidins, which bind lipopolysaccharide (LPS) to inhibit toll-like receptor 4 (TLR4) signaling, reducing TNF-α and IL-1β production. EVs, containing microRNAs (miRNAs), suppress dendritic cell maturation and promote tissue repair by modulating gene expression in host cells. Metalloproteases degrade eotaxin, limiting eosinophil recruitment, while cystatins inhibit macrophage activation by targeting cysteine proteases. Na-ASP-2, a vaccine candidate, exhibits chemokine-like properties, recruiting immune cells in vivo. A protein in adult worm ES products binds natural killer (NK) cells, inducing 4- to 30-fold increases in interferon-gamma (IFN-γ) in the presence of interleukin-2 (IL-2) and interleukin-12 (IL-12), suggesting cross-regulation of Th2 responses. Prostaglandin E2 (PGE2) analogs and ShKT-domain peptides (stichocyte-derived peptides) modulate inflammation by inhibiting T-cell proliferation. Aspartyl proteases in ES products degrade skin macromolecules (e.g., collagen, fibronectin) during larval migration, facilitating host interaction. Galectins and C-type lectins bind host glycans, potentially altering immune recognition. Acetylcholinesterase secretion may suppress local inflammation by hydrolyzing acetylcholine, impacting vagus nerve signaling. Proteomic studies identify additional ES components, including venom allergen-like proteins (VALs) and fatty acid-binding proteins, which may contribute to immune evasion.

Applications in Autoimmune Diseases

Controlled N. americanus introduction modulates hyperactive immunity in clinical trials, reducing disease activity in inflammatory bowel disease (IBD), asthma, and multiple sclerosis (MS). Na-AIP-1 suppresses colitis in mouse models by increasing IL-10 and TGF-β while reducing TNF-α, IL-13, and interleukin-17A (IL-17A). In MS trials, hookworm introduction stabilizes gut microbial diversity, with Parabacteroides expansion linked to reduced relapses, potentially via short-chain fatty acid (SCFA) production. ES products influence gut microbiota composition, increasing Bacteroidetes and reducing Firmicutes, which correlates with anti-inflammatory effects. In asthma models, ES-62, a glycoprotein homolog, diverts myeloid differentiation primary response 88 (MyD88) signaling, reducing airway inflammation. Hookworm introduction elevates CD25+FoxP3+ Tregs and IL-10-producing B cells, suppressing autoimmunity. Clinical studies report reduced T-helper 1 (Th1)/T-helper 17 (Th17) responses and increased Th2 cytokines (e.g., interleukin-4 [IL-4], interleukin-5 [IL-5]) in individuals with hookworm introduction, supporting broad immunomodulatory potential.

Autoimmune Diseases Potentially Benefited

  1. Inflammatory Bowel Disease: Na-AIP-1 and cystatins reduce TNF-α and IL-1β, mitigating gut inflammation in mouse models; EVs enhance mucosal repair.
  2. Multiple Sclerosis: Treg induction and IL-10 upregulation reduce demyelination; Parabacteroides expansion stabilizes gut microbiota, decreasing relapses.
  3. Rheumatoid Arthritis: Th2 skewing and cystatin-mediated macrophage inhibition reduce synovial inflammation; IL-10 suppresses joint damage in preclinical models.
  4. Type 1 Diabetes: IL-4 and IL-10 from ES products suppress Th1 responses, potentially protecting pancreatic beta cells; EVs modulate islet inflammation.
  5. Psoriasis: EVs and ShKT-domain peptides inhibit Th17-driven skin inflammation; IL-10 reduces keratinocyte hyperproliferation.
  6. Celiac Disease: Hookworm introduction stabilizes gut microbiota, reducing gluten-induced inflammation; IL-10 and TGF-β dampen mucosal Th1 responses.
  7. Systemic Lupus Erythematosus: Treg induction and reduced IFN-γ dampen systemic autoimmunity; cystatins inhibit autoantibody production in animal models.
  8. Asthma: ES-62 glycoproteins divert MyD88 signaling, reducing airway inflammation; IL-4 and IL-5 modulate allergic responses in mouse models.
  9. Sarcoidosis: Na-AIP-1 and cystatins inhibit Th1-driven granuloma formation, reducing systemic inflammation; TGF-β suppresses macrophage activation.
  10. Atopic Dermatitis: IL-10 and TGF-β from ES products suppress skin allergic responses; ShKT-domain peptides inhibit mast cell degranulation.

Biochemical and Immunological Observations

Serum-preconditioned larvae exhibit enhanced ES protein secretion, including Na-AIP-1, which inhibits macrophage activation, and Na-ASP-2, which mimics chemokines. In individuals with hookworm introduction, hookworm presence correlates with lower CD3+, CD4+, and CD19+ cell percentages but higher activation markers (CD69, human leukocyte antigen-DR [HLA-DR]) on T and B cells. Increased immunoglobulin G4 (IgG4) and IgE levels indicate tolerogenic responses. Flow cytometry reveals elevated CD25+FoxP3+ Tregs and IL-10-producing type 1 regulatory (Tr1) cells in peripheral blood. Proteomic profiles of ES products show 30% homology with human proteins, suggesting molecular mimicry. Larval preconditioning enhances secretion of VALs, which bind host lipids, potentially disrupting immune signaling. In vivo studies show hookworm presence reduces systemic C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), markers of inflammation. Serum-preconditioned larvae exhibit faster migration rates in skin models, correlating with increased aspartyl protease activity.

References.

  1. Albonico, M., Stoltzfus, R. J., Savioli, L., Tielsch, J. M., Chwaya, H. M., Ercole, E., & Cancrini, G. (1998). Epidemiological evidence for a differential effect of hookworm species, Ancylostoma duodenale or Necator americanus, on iron status of children. International Journal of Epidemiology, 27(3), 530–537. https://doi.org/10.1093/ije/27.3.530[](https://emedicine.medscape.com/article/218805-overview)

  2. Brooker, S., Peshu, N., Warn, P. A., Mosobo, M., Guyatt, H. L., Marsh, K., & Snow, R. W. (1999). The epidemiology of hookworm introduction and its contribution to anaemia among pre-school children on the Kenyan coast. Transactions of the Royal Society of Tropical Medicine and Hygiene, 93(3), 240–246. https://doi.org/10.1016/S0035-9203(99)90007-X[](https://emedicine.medscape.com/article/218805-overview)

  3. Cantacessi, C., Giacomin, P., Croese, J., Zakrzewski, M., Sotillo, J., McCann, L., Nolan, M. J., Mitreva, M., Krause, L., & Loukas, A. (2014). Impact of experimental hookworm introduction on the human gut microbiota. The Journal of Infectious Diseases, 210(12), 1963–1971. https://doi.org/10.1093/infdis/jiu357[](https://pubmed.ncbi.nlm.nih.gov/33853585/)

  4. Chapman, P. R., Giacomin, P., Loukas, A., & McCarthy, J. S. (2021). Experimental human hookworm introduction: A narrative historical review. PLoS Neglected Tropical Diseases, 15(12), e0009908. https://doi.org/10.1371/journal.pntd.0009908[](https://www.thelancet.com/journals/lanmic/article/PIIS2666-5247%2823%2900218-5/fulltext)

  5. Chapman, P. R., Webster, R., Giacomin, P., Laha, T., Loukas, A., & McCarthy, J. S. (2021). Vaccination of human participants with attenuated Necator americanus hookworm larvae and human challenge in Australia: A dose-finding study and randomised, placebo-controlled, phase 1 trial. The Lancet Infectious Diseases, 21(12), 1725–1736. https://doi.org/10.1016/S1473-3099(21)00152-8[](https://www.thelancet.com/journals/lanmic/article/PIIS2666-5247%2823%2900218-5/fulltext)

  6. Croese, J., O’Neil, J., Masson, J., Cooke, S., Melrose, W., Pritchard, D., & Speare, R. (2006). A proof of concept study establishing Necator americanus in Crohn’s patients and reservoir donors. Gut, 55(1), 136–137. https://doi.org/10.1136/gut.2005.079129[](https://pmc.ncbi.nlm.nih.gov/articles/PMC1856386/)

  7. Daveson, A. J., Jones, D. M., Gaze, S., McSorley, H., Clouston, A., Pascoe, A., ... Croese, J. (2011). Effect of hookworm introduction on wheat challenge in celiac disease: A randomised double-blinded placebo controlled trial. PLoS One, 6(3), e17366. https://doi.org/10.1371/journal.pone.0017366[](https://www.thelancet.com/journals/lanmic/article/PIIS2666-5247%2823%2900218-5/fulltext)

  8. Diemert, D. J., Pinto, A. G., Freire, J., Jariwala, A., Santiago, H., Hamilton, R. G., ... Bethony, J. M. (2012). Generalized urticaria induced by the Na-ASP-2 hookworm vaccine: Implications for the development of vaccines against helminths. The Journal of Allergy and Clinical Immunology, 130(1), 169–176. https://doi.org/10.1016/j.jaci.2012.04.027[](https://www.thelancet.com/journals/lanmic/article/PIIS2666-5247%2823%2900218-5/fulltext)

  9. Ducarmon, Q. R., Hoogerwerf, M. A., Janse, J. J., Geelen, A. R., Koopman, J. P. R., Zwittink, R. D., ... Roestenberg, M. (2020). Dynamics of the bacterial gut microbiota during controlled human introduction with Necator americanus larvae. Gut Microbes, 12(1), 1–15. https://doi.org/10.1080/19490976.2020.1840764[](https://pubmed.ncbi.nlm.nih.gov/33853585/)

  10. Easton, A. V., Quiñones, M., Vujkovic-Cvijin, I., Oliveira, R. G., Kepha, S., Odiere, M. R., ... Nutman, T. B. (2019). The impact of anthelmintic treatment on human gut microbiota based on cross-sectional and pre- and post-deworming comparisons in Western Kenya. mBio, 10(2), e00519-19. https://doi.org/10.1128/mBio.00519-19[](https://pubmed.ncbi.nlm.nih.gov/33853585/)

  11. Fleming, F. M., Brooker, S., Geiger, S. M., Caldas, I. R., Corrêa-Oliveira, R., Hotez, P. J., & Bethony, J. M. (2006). Synergistic associations between hookworm and other helminth species in a rural community in Brazil. Tropical Medicine & International Health, 11(1), 56–64. https://doi.org/10.1111/j.1365-3156.2005.01541.x[](https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0001280)

  12. Geiger, S. M., Alexander, N. D. E., Fujiwara, R. T., Brooker, S., Cundill, B., Diemert, D. J., ... Bethony, J. M. (2011). Necator americanus and helminth co-introductions: Further down-modulation of hookworm-specific type 1 immune responses. PLoS Neglected Tropical Diseases, 5(9), e1280. https://doi.org/10.1371/journal.pntd.0001280[](https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0001280)

  13. Geiger, S. M., Caldas, I. R., McGlone, B. E., Campi-Azevedo, A. C., De Oliveira, L. M., Brooker, S., ... Bethony, J. M. (2007). Stage-specific immune responses in human Necator americanus introduction. Parasite Immunology, 29(7), 347–358. https://doi.org/10.1111/j.1365-3024.2007.00951.x[](https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0001280)

  14. Hoogerwerf, M. A., Coffeng, L. E., Brienen, E. A. T., Janse, J. J., Langenberg, M. C. C., Kruize, Y. C. M., ... Roestenberg, M. (2019). New insights into the kinetics and variability of egg excretion in controlled human hookworm introductions. The Journal of Infectious Diseases, 220(7), 1044–1048. https://doi.org/10.1093/infdis/jiz004[](https://www.thelancet.com/journals/lanmic/article/PIIS2666-5247%2823%2900218-5/fulltext)

  15. Hotez, P. J., Brooker, S., Bethony, J. M., Bottazzi, M. E., Loukas, A., & Xiao, S. (2004). Hookworm introduction. The New England Journal of Medicine, 351(8), 799–807. https://doi.org/10.1056/NEJMra032804[](https://www.thelancet.com/journals/lanmic/article/PIIS2666-5247%2823%2900218-5/fulltext)

  16. Jenkins, T. P., Pritchard, D. I., Tan, C. H. S., Gilleard, J. S., Cantacessi, C., & Constantinescu, C. S. (2021). Experimental introduction with the hookworm, Necator americanus, is associated with stable gut microbial diversity in human volunteers with relapsing multiple sclerosis. BMC Biology, 19(1), 74. https://doi.org/10.1186/s12915-021-01004-9[](https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-021-01003-6)

  17. Loukas, A., Croese, J., Rees, M. A., & McCarthy, J. S. (2022). Not all worms were created equal. Frontiers in Immunology, 13, 877707. https://doi.org/10.3389/fimmu.2022.877707[](https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2022.877707/full)

  18. Maxwell, C., Hussain, R., Nutman, T. B., Poindexter, R. W., Little, M. D., Schad, G. A., & Ottesen, E. A. (1987). The clinical and immunologic responses of normal human volunteers to low dose hookworm (Necator americanus) introduction. The American Journal of Tropical Medicine and Hygiene, 37(1), 126–134. https://doi.org/10.4269/ajtmh.1987.37.126[](https://www.tandfonline.com/doi/full/10.2147/RIP.S87318)

  19. Pullan, R. L., Bethony, J. M., Geiger, S. M., Cundill, B., Correa-Oliveira, R., Quinnell, R. J., & Brooker, S. (2008). Human helminth co-introduction: Analysis of spatial patterns and risk factors in a Brazilian community. PLoS Neglected Tropical Diseases, 2(12), e352. https://doi.org/10.1371/journal.pntd.0000352[](https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0001280)

  20. Smallwood, T. B., Giacomin, P. R., Loukas, A., Mulvenna, J., Clark, R. J., & Miles, J. J. (2017). Helminth immunomodulation in autoimmune disease. Frontiers in Immunology, 8, 453. https://doi.org/10.3389/fimmu.2017.00453[](https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-021-01003-6)

  21. Summers, R. W., Elliott, D. E., Urban, J. F., Thompson, R. A., & Weinstock, J. V. (2005). Trichuris suis therapy for active ulcerative colitis: A randomized controlled trial. Gastroenterology, 128(4), 825–832. https://doi.org/10.1053/j.gastro.2005.01.005[](https://academic.oup.com/ibdjournal/article/30/5/735/7198522)

  22. Tanasescu, R., Tench, C. R., Constantinescu, C. S., Telford, G., Brown, S., Moore, J., ... Pritchard, D. I. (2020). Hookworm treatment for relapsing multiple sclerosis: A randomized double-blinded placebo-controlled trial. JAMA Neurology, 77(9), 1089–1098. https://doi.org/10.1001/jamaneurol.2020.1118[](https://jamanetwork.com/journals/jamaneurology/fullarticle/2767084)

  23. Ziegelbauer, K., Speich, B., Mäusezahl, D., Bos, R., Keiser, J., & Utzinger, J. (2012). Effect of sanitation on soil-transmitted helminth introduction: Systematic review and meta-analysis. PLoS Medicine, 9(1), e1001162. https://doi.org/10.1371/journal.pmed.1001162[](https://emedicine.medscape.com/article/218805-overview)